Abstract:
We have considered the system of $N$ similar interacting bosons in the external field.
Hamiltonian of the system is
$$
\widehat H_N=\sum_{i=1}^{N}\bigl(-\Delta_i/2+U(x_i)\bigr)+\varepsilon\sum_{1\le i<j\le N} V(x_i-x_j).
$$
We have found asimptotical series of eigenvalues and eigenfunctions of
$\widehat H_N$ if $N\to\infty$, $\varepsilon\to0$, $\varepsilon N\to\alpha=\text{const}$. These
series correspond with stable solutions of Hartree equation
$$
\bigl(-\Delta/2+U(x)\bigr) f(x)+\alpha\int dy\,V(x-y)\,|f(y)|^2f(x)=\Omega f(x).
$$
If $U=0$, $f(x)=\text{const}\cdot\exp(ipx)$ then out result is in agreement with
Bogolubov's work about
superfluidity. Phenomena analogous with superfluidity arises in other cases,
too.