RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2006 Volume 147, Number 1, Pages 47–57 (Mi tmf2021)

This article is cited in 7 papers

Bound states of a system of two fermions on a one-dimensional lattice

Zh. I. Abdullaev

A. Navoi Samarkand State University

Abstract: We consider the Hamiltonian of a system of two fermions on a one-dimensional integer lattice. We prove that the number of bound states $N(k)$ is a nondecreasing function of the total quasimomentum of the system $k\in[0,\pi]$. We describe the set of discontinuity points of $N(k)$ and evaluate the jump $N(k+0)-N(k)$ at the discontinuity points. We establish that the bound-state energy $z_n(k)$ increases as the total quasimomentum $k\in[0,\pi]$ increases.

Keywords: Hamiltonian, bound state, total quasimomentum, Schrödinger operator, eigenvalue, resonance, Birman–Schwinger principle.

Received: 06.06.2005

DOI: 10.4213/tmf2021


 English version:
Theoretical and Mathematical Physics, 2006, 147:1, 486–495

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024