RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 136, Number 1, Pages 20–29 (Mi tmf210)

This article is cited in 3 papers

Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature

O. I. Mokhov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies

Abstract: We prove that the equations describing compatible $(N\times N)$ metrics of constant Riemannian curvature define a special class of integrable $N$-parameter deformations of quasi-Frobenius (in general, noncommutative) algebras. We discuss connections with open-closed two-dimensional topological field theories, associativity equations, and Frobenius and quasi-Frobenius manifolds. We conjecture that open-closed two-dimensional topological field theories correspond to a special class of integrable deformations of associative quasi-Frobenius algebras.

Keywords: quasi-Frobenius algebra, Frobenius algebra, integrable deformation of an algebra, topological field theory, compatible metrics, constant-curvature metrics, integrable system, quasi-Frobenius manifold, Frobenius manifold, flat pencil of metrics, associativity equations.

Received: 24.09.2002

DOI: 10.4213/tmf210


 English version:
Theoretical and Mathematical Physics, 2003, 136:1, 908–916

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024