RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 136, Number 2, Pages 231–245 (Mi tmf218)

This article is cited in 22 papers

Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice

Zh. I. Abdullaev, S. N. Lakaev

A. Navoi Samarkand State University

Abstract: We consider the Hamiltonian $H_\mu(K)$ of a system consisting of three bosons that interact through attractive pair contact potentials on a three-dimensional integer lattice. We obtain an asymptotic value for the number $N(K,z)$ of eigenvalues of the operator $H_{\mu_0}(K)$ lying below $z\le0$ with respect to the total quasimomentum $K\to0$ and the spectral parameter $z\to-0$.

Keywords: asymptotics, Schrödinger operator, essential spectrum, discrete spectrum, Hilbert–Schmidt operator.

Received: 23.07.2002
Revised: 30.11.2002

DOI: 10.4213/tmf218


 English version:
Theoretical and Mathematical Physics, 2003, 136:2, 1096–1109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024