RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1983 Volume 56, Number 1, Pages 15–30 (Mi tmf2186)

This article is cited in 42 papers

The $CP^{N-1}$ model: Calculation of anomalous dimensions and the mixing matrices in the order $1/N$

A. N. Vasil'ev, M. Yu. Nalimov

Leningrad State University

Abstract: In the first order in $1/N$ for arbitrary dimension $2<d<4$ of space for the $CP^{N-1}$ model quantized by means of the auxiliary fields $\varphi$ and $B$ ($\Phi$ is the principal field, go the auxiliary scalar field, and $B$ the auxiliary vector field) the following are calculated: 1) the matrix of renormalization constants and the corresponding matrix of the anomalous dimensions of the mixed operators $\varphi$ and $B^2$ of canonical dimension $2$; 2) the analogous matrices for the mixed operators $\varphi^2$ and $F_{\alpha\beta}F_{\alpha\beta}$ of canonical dimension $4$, which determine two correction exponents $\omega$; 3) the anomalous dimension $\gamma_\Phi$ in an arbitrary gauge.

Received: 08.07.1982


 English version:
Theoretical and Mathematical Physics, 1983, 56:1, 643–653

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024