Abstract:
It is shown that for a nonrelativistic charged particle moving in an arbitrary external electromagnetic field there exist approximate solutions of the Schrödinger equation such that the mean quantum-mechanical coordinates and momenta of these states are enact general solutions of the classical Hamilton equations. Such states are called trajectory-coherent states. The wave functions of trajectory-coherent states are obtained by Maslov's complex germ method. The simplest properties of these states are studied.