RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2006 Volume 148, Number 3, Pages 398–427 (Mi tmf2324)

This article is cited in 110 papers

Kazhdan–Lusztig correspondence for the representation category of the triplet $W$-algebra in logarithmic CFT

A. M. Gainutdinova, A. M. Semikhatovb, I. Yu. Tipuninb, B. L. Feiginc

a M. V. Lomonosov Moscow State University, Faculty of Physics
b P. N. Lebedev Physical Institute, Russian Academy of Sciences
c L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: To study the representation category of the triplet $W$-algebra $\boldsymbol{\mathcal{W}}(p)$ that is the symmetry of the $(1,p)$ logarithmic conformal field theory model, we propose the equivalent category $\EuScript{C}_p$ of finite-dimensional representations of the restricted quantum group $\overline{\EuScript{U}}_{\!\mathfrak{q}} s\ell(2)$ at $\mathfrak{q}=e^{{i\pi}/{p}}$. We fully describe the category $\EuScript{C}_p$ by classifying all indecomposable representations. These are exhausted by projective modules and three series of representations that are essentially described by indecomposable representations of the Kronecker quiver. The equivalence of the $\boldsymbol{\mathcal{W}}(p)$- and $\overline{\EuScript{U}}_{\!\mathfrak{q}} s\ell(2)$-representation categories is conjectured for all $p\ge2$ and proved for $p=2$. The implications include identifying the quantum group center with the logarithmic conformal field theory center and the universal $R$-matrix with the braiding matrix.

Keywords: Kazhdan–Lusztig correspondence, quantum groups, logarithmic conformal field theories, indecomposable representations.

Received: 31.12.2005

DOI: 10.4213/tmf2324


 English version:
Theoretical and Mathematical Physics, 2006, 148:3, 1210–1235

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024