RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 137, Number 1, Pages 14–26 (Mi tmf241)

This article is cited in 73 papers

The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions

M. S. Bruzóna, M. L. Gandariasa, C. Muriela, J. Ramíresa, S. Saeza, F. R. Romerob

a Universidad de Cadiz
b University of Seville

Abstract: We use the classical and nonclassical methods to obtain symmetry reductions and exact solutions of the $(2+1)$-dimensional integrable Calogero–Bogoyavlenskii–Schiff equation. Although this $(2+1)$-dimensional equation arises in a nonlocal form, it can be written as a system of differential equations and, in potential form, as a fourth-order partial differential equation. The classical and nonclassical methods yield some exact solutions of the $(2+1)$-dimensional equation that involve several arbitrary functions and hence exhibit a rich variety of qualitative behavior.

Keywords: partial differential equations, symmetries.

DOI: 10.4213/tmf241


 English version:
Theoretical and Mathematical Physics, 2003, 137:1, 1367–1377

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024