RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 137, Number 1, Pages 27–39 (Mi tmf242)

This article is cited in 18 papers

Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

M. S. Bruzóna, M. L. Gandariasa, C. Muriela, J. Ramíresa, F. R. Romerob

a Universidad de Cadiz
b University of Seville

Abstract: One of the more interesting solutions of the $(2+1)$-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in $2+1$ dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the $(2+1)$-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in $2+1$ dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in $2+1$ dimensions. It is interesting that neither of the $(2+1)$-dimensional integrable systems considered admit Virasoro-type subalgebras.

Keywords: partial differential equations, Lie symmetries.

DOI: 10.4213/tmf242


 English version:
Theoretical and Mathematical Physics, 2003, 137:1, 1378–1389

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024