RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1979 Volume 39, Number 2, Pages 180–184 (Mi tmf2658)

This article is cited in 1 paper

On the existence of the Deser–Gilbert–Sudarshan representation

R. Bartel, D. Robaschik


Abstract: The Jost–Lehmann representation for the single-particle matrix element $\langle p|[j(x),j(0)]|p\rangle=\varepsilon(x_0)\widehat C(x^2,x_0)$ of the current commutator is used to study the existence of the Deser–Gilbert–Sudarshan representation. Using the analytic and functional properties of this matrix element, one can show that the spectral function for the Deser–Gilbert–Sudarshan representation exists in the ordinary sense if and only if $\widehat C(x^2,x_0)\in S'(\overline R_+\otimes R)$. In the general case, the spectral function is an element of a more complicated space.

Received: 11.05.1978


 English version:
Theoretical and Mathematical Physics, 1979, 39:2, 398–401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024