RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1978 Volume 36, Number 3, Pages 303–312 (Mi tmf3082)

This article is cited in 1 paper

Fourier expansion associated with the Lorentz group in the space of functions with support outisde the light cone

Yu. G. Shondin


Abstract: Harmonic analysis on the Lorentz group is constructed in the function space $S(\overline V)$, where $\overline V=R^4\backslash V_+\cup V_-$ ($V_+$ and $V_-$ are, respectively, the future and past light cones). The space $L(\overline V)$, the Fourier transform of $S(\overline V)$, is described. A topological isomorphism between $L(\overline V)$ and $S(\overline V)$ is proved. The results obtained for the space $S(\overline V)$ together with the corresponding results for the spaces $S(\overline V_+)$ and $S(\overline V_-)$ (see [2]) make it possible to construct expansions with respect to irreducible representations of the Lorentz group for generalized functions in $S'(R_4)$.

Received: 09.12.1977


 English version:
Theoretical and Mathematical Physics, 1978, 36:3, 752–759

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024