RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1980 Volume 43, Number 3, Pages 291–308 (Mi tmf3227)

Contribution from far singularities in the $\cos\theta$ plane to the scattering amplitude and to the distribution function of inclusive processes

A. A. Logunov, M. A. Mestvirishvili, G. L. Rcheulishvili, A. P. Samokhin


Abstract: Using the imitarity condition, polynomial boundedness with respect to energy and analyticity of the amplitude $F(s,z)$ in the $z=\cos\theta$-plane in a certain fixed complex neighbourhood of the physical points $-1<z<1$, it is shown that if the high-energy asymptotics of the amplitude is such that $|F(s,1)|\geqslant c(\ln s)^{2+\varepsilon}$, then such behaviour of the amplitude is completely determined by the nearest to the point $z=1$ singularity of the amplitude. The similar results are obtained for the spectrum of one-particle inclusive process integrated over the momentum values. It is also shown that if the absorptive part of the elastic scattering amplitude is analytic in a certain bounded region of the $z$-plane with cuts along the real axis and $\sigma_{\mathrm {tot}}(s)>(\ln s)^{-1}$ then the discontinuity of the amplitude on the right-hand side cut is a sign-changing function of $z$.

Received: 14.05.1979


 English version:
Theoretical and Mathematical Physics, 1980, 43:3, 469–480

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025