RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2002 Volume 132, Number 1, Pages 74–89 (Mi tmf347)

This article is cited in 2 papers

Discrete Symmetries of the $n$-Wave Problem

A. N. Leznovabc

a Institute for High Energy Physics
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
c Universidad Autónoma del Estado de Hidalgo

Abstract: We show that discrete symmetries $T$ of multicomponent integrable systems have a fine structure and can be represented as products of positive integer powers of pairwise commuting basis discrete transformations $T_i$. The calculations are completed for the $n$-wave problem.

Keywords: integrable mappings and chains, discrete transformations, Darboux transformation, higher-dimensional integrable systems.

Received: 25.10.2001

DOI: 10.4213/tmf347


 English version:
Theoretical and Mathematical Physics, 2002, 132:1, 955–969

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024