RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1980 Volume 45, Number 1, Pages 30–45 (Mi tmf3765)

This article is cited in 4 papers

Structure of representations of the conformal supergroup in the $OSp(1,4)$ basis

E. A. Ivanov, A. S. Sorin


Abstract: A new method is suggested for constructing the complete set of irreducible representations of conformal supergroup $SU(2,2/1)$ acting on superfields of the type $\Phi(k,\theta_+,\theta_-)$ ($k$ being the Lorentz index, $\theta_+$, $\theta_-$ left- and right-handed Grassmann coordinates). Its main point is the reduction of the problem to the much more simple task of extracting the minimal set of certain invariant spaces of the orthosymplectic subgroup $OSp^\mathrm{I}(1,4)$, of the supergroup $SU(2,2/1)$. These spaces are those closed also with respect to another $OSp(1,4)$-subgroup ($OSp^\mathrm{II}(1,4)$) which intersects with $OSp^\mathrm{I}(1,4)$ over $O(2,3)$ and completes it to the whole $SU(2,2/1)$. The precise criterion for selection of such invariant spaces is formulated. New series of $SU(2,2/1)$ representations are found and the problem of the equivalency between representations induced by various little (super) groups is discussed.

Received: 31.07.1979


 English version:
Theoretical and Mathematical Physics, 1980, 45:1, 862–873

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024