RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1975 Volume 24, Number 1, Pages 100–108 (Mi tmf3971)

This article is cited in 4 papers

Uniqueness of the limit Gibbs distribution in one-dimensional classical systems

R. A. Minlos, G. M. Natapov


Abstract: Uniqueness of the limit Gibbs distribution is proved for the one-dimensional latticesystems, in which the slow decreasing of the inter-particle interaction is allowed. The main restriction on the interaction potential $U(c)$ is
$$ \sum_{c\colon0\in c,\,\operatorname{diam}\{c\}=K}\operatorname{diam}\{c\}|U(c)|<B\ln\ln K, $$
where $c=\{x_1,\dots,x_n\}$ is an arbitrary configuration of particles on the lattice and $B$ is some sufficiently small constant.

Received: 20.09.1974


 English version:
Theoretical and Mathematical Physics, 1975, 24:1, 697–703

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024