RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1970 Volume 3, Number 3, Pages 377–391 (Mi tmf4121)

This article is cited in 11 papers

Method of generating functions for a quantum oscillator

A. M. Perelomov, V. S. Popov


Abstract: A method of generating functions is developed for studying a quantum oscillator with a variable frequency $\omega(t)$ subject to the influence of an external force $f(t)$. The method is used to obtain an explicit expression for the transition probabilities $w_{mn}$ between states $|n,\omega_{-}\rangle$ and $|m,\omega_{+}\rangle$, containing a definite number of quanta at the start $(n)$ and end $(m)$ of the process. The Heisenberg representation is discussed and the associated geometrical interpretation of the dynamical variables on the phase plane. By means of the phase plane, formulas are obtained for $w_{mn}$ in the quasiclassical limit (strongly degenerate oscillator for which $m,n\gg 1$). The application of the method of generating functions to the problem of the relaxation of a quantum oscillator interacting with a thermostat is discussed.

Received: 22.09.1969


 English version:
Theoretical and Mathematical Physics, 1970, 3:3, 582–592


© Steklov Math. Inst. of RAS, 2024