RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1970 Volume 4, Number 1, Pages 3–6 (Mi tmf4127)

This article is cited in 8 papers

Relationship between the elastic forward scattering amplitudes for a particle and antiparticle at finite energies

Yu. S. Vernov


Abstract: Using the general postulates the following relationship is proved:
$$ \left|\int_{E_1}^{E_2}\ln\right|\frac{f_{+}(E')}{f_{-}(E')}\left|\frac{dE'}{E'}\right|<\pi^2, $$
where $f_{+}(E)$, $(f_{-}(E))$ is the elastic forward scattering amplitude for the particle (antiparticle). $E_1$, $E_2$ – arbitrary energies in l.s. Amplitudes $f_{\pm}(E)$ are proved to have no zeros in the complex plane of $E$.

Received: 04.01.1970


 English version:
Theoretical and Mathematical Physics, 1970, 4:1, 627–630


© Steklov Math. Inst. of RAS, 2024