RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1978 Volume 36, Number 2, Pages 183–192 (Mi tmf4299)

This article is cited in 3 papers

Singularities of Feynman diagrams in the coordinate space

V. A. Smirnov


Abstract: The wave front $WF(G_k)$ of an arbitrary Feynman diagram with $k$ external vertices is described. It is shown that $G_2(x_1,x_2)$ can have singularities only for $(x_1-x_2)^2=0$, and $G_3(x_1,x_2,x_3)$ only when $(x_j-x_{j'})^2=0$ for certain $j\ne j'$. It is shown that in the case of four or more external vertices the simplest diagrams have singularities not only on the light cones with respect to $x_j-x_{j'}$.

Received: 16.11.1977


 English version:
Theoretical and Mathematical Physics, 1978, 36:2, 676–682

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025