RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1981 Volume 47, Number 2, Pages 266–276 (Mi tmf4461)

This article is cited in 1 paper

Asymptotic behavior of the spectrum of an anharmonic oscillator

L. A. Sakhnovich


Abstract: The asymptotic expansion
$$ \lambda_n=n-\frac{1}{2}+\frac{1}{2\pi\sqrt n}\biggl[\int_{-\infty}^{\infty}q(t)d(t)+o(1)\biggr], \quad n\to\infty, $$
is obtained for the spectrum of the equation $-y^{''}+[x^2/4+q(x)]y=\lambda y$, $-\infty<x<\infty$, of the anharmonic oscillator. The ease when the potential $v(x)$ has the form $v(x)=\alpha|x|+q(x)$ is also considered.

Received: 01.02.1980


 English version:
Theoretical and Mathematical Physics, 1981, 47:2, 449–456

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025