RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1987 Volume 70, Number 3, Pages 384–393 (Mi tmf4685)

This article is cited in 3 papers

Oscillator with singular perturbation

V. B. Gostev, V. S. Mineev, A. R. Frenkin


Abstract: The Rayleign–Schrödinger perturbation theory is formulated for even states of a one-dimensional oscillator with the singular perturbation $\lambda|x|^{-\nu}(1\leq\nu <2)$. It is shown that the matrix elements of the perturbation and the Rayleigh–Schrödinger series evist for $1\leq\nu <3/2$ if the induced point perturbation
$$-2\lambda(\nu-1)^{-1}|x|^{1-\nu}\delta(x) \quad (1<\nu <3/2), \quad 2\lambda\ln |x|\delta(x) \quad (\nu=1).$$
arising as the result of the singular perturbation is taken into account. For $3/2<\nu <2$ the standard perturbation theory cannot be constructed although the energy levels are analytic in $\lambda$.

Received: 26.11.1985


 English version:
Theoretical and Mathematical Physics, 1987, 70:3, 270–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024