RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1989 Volume 78, Number 1, Pages 140–146 (Mi tmf4724)

Wilson expansion in minimal subtraction scheme

V. A. Smirnov


Abstract: The small distance expansion of the product of composite fields is constructed for and arbitrary renormalization procedure of the type of minimal subtraction scheme. Coefficient functions of the expansion are expressed explicitly through the Green functions of composite fields. The expansion has the explicity finite form: the ultraviolet (UV) divergences of the coefficient functions and composite fields are removed by the initial renormalization procedure while the infrared (IR) divergences in massless diagrams with nonvanishing contribution into the coefficient functions are removed by the $\tilde R$-operation which is the IR part of the $R^*$-operation. The latter is the generalization of the dimensional renormalization in the case when both UV and IR divergences are prosent. To derive the expansion, a “pre-subtracting operator” is introduced and formulas of the counter-term technique are exploited.

Received: 18.11.1987


 English version:
Theoretical and Mathematical Physics, 1989, 78:1, 100–105

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024