RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2004 Volume 138, Number 1, Pages 93–103 (Mi tmf5)

This article is cited in 1 paper

The $SU_3$ Space and Its Quotient Spaces

D. E. Burlankov

N. I. Lobachevski State University of Nizhni Novgorod

Abstract: A metric description of symmetric Riemannian spaces is needed for constructing gauge fields with a symmetry. We describe the group $SU_3$ as a Riemannian space for two different parameterizations and develop a Hamiltonian technique for constructing quotient spaces. We construct the quotient spaces of the group $SU_3$, namely, the six-dimensional quotient space $(SU_3/O_2^2)$, the five-dimensional quotient space $(SU_3/O_3)$, and the two four-dimensional quotient spaces $(SU_3/O_2^4)$ and $(SU_3/O_3/O_2)$.

Keywords: group $SU_3$, parameterization, metric, geometric Hamiltonian, quotient space.

Received: 27.12.2002

DOI: 10.4213/tmf5


 English version:
Theoretical and Mathematical Physics, 2004, 138:1, 78–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024