RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1985 Volume 65, Number 2, Pages 271–284 (Mi tmf5099)

This article is cited in 5 papers

Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability

N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko


Abstract: A method is proposed for finding Lax type representations for nonlinear evolution (one-dimensional) equations of mathematical physics. It is shown that the Schrödinger type nonlinear model $\psi_t-i\psi_{xx}+2|\psi|^2\psi_x=0$ admits a Lax-type representation and is a Hamiltonian completely integrable dynamical system. Exact quasiperiodic (finite-gap, i.e  having only a finite number of stability bands in its spectrum) solutions of this system are obtained in terms of Riemann theta functions.

Received: 26.12.1984


 English version:
Theoretical and Mathematical Physics, 1985, 65:2, 1154–1164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024