RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1989 Volume 80, Number 1, Pages 3–14 (Mi tmf5102)

This article is cited in 2 papers

Ghost number and ghost conjugation operators in the formalism of BRST quantization

T. Ya. Azizov, S. S. Horuzhy


Abstract: Detailed and rigorous study is made of operators of the ghost number $Q_c$ and ghost conjugation $U_c$ which are operators in Krein spaces arising in the BRST quantization formalism for constrained dynamical systems. A number of conditions are obtained which guarantee that $Q_c$ is well-defined and $J$-symmetric. It is shown that properties of $Q_c$ are related to the following geometrical problem: to find conditions under which a pair of lineals in the Krein space can be made neutral by the appropriate choice of $J$-metrics. The complete solution of this problem is given. Whole series of examples is constructed which demonstrate the connections between properties of $Q_c$ and geometry of its spectral subspaces.

Received: 28.03.1988


 English version:
Theoretical and Mathematical Physics, 1989, 80:1, 671–679

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025