RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1987 Volume 72, Number 1, Pages 35–44 (Mi tmf5307)

Reductions and exact solutions of a nonlinear Dirac equation

W. I. Fushchych, V. M. Shtelen'


Abstract: Ansätze are constructed which reduce the Poincaré-invariant equation for the spinor field $\Psi (x_0, x_1, x_2, x_3)$ to a system of partial differential equations for the four-component function $\varphi(\omega)$ depending on three invariant variables $\omega=\{\omega_1(x), \omega_2(x), \omega_3(x)\}$. Multiparameter families of exact solutions of the nonlinear Dirac equation with the mass term are found. The $P(1.3)$-nonequivalent Ansätze for a vector field are constructed.

Received: 03.03.1986


 English version:
Theoretical and Mathematical Physics, 1987, 72:1, 703–710

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025