RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1989 Volume 81, Number 2, Pages 281–290 (Mi tmf5372)

This article is cited in 7 papers

Mean-field models in the theory of random media. I

L. V. Bogachev, S. A. Molchanov


Abstract: It is the first in the series of works treating the problems of the theory of random media on the basis of the mean field (nonlocal) diffusion approximation with the corresponding operator $\overline\Delta_V$, $V\subset\mathbf Z^d$. The general introduction to the whole cycle is presented including a brief survey of problems in the theory of random media. The localization problem for the operator $H_V=\overline\Delta_V+\xi(x)$ is also considered, where $\{\xi(x)\}$ are i. i. d. continious random variables, $|V|\to\infty$. It is proved that the localization in the average (uniformly in $V$) takes place.

Received: 15.06.1988


 English version:
Theoretical and Mathematical Physics, 1989, 81:2, 1207–1214

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024