RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1990 Volume 82, Number 2, Pages 268–277 (Mi tmf5415)

Instability criterion for multidimensional nonlinear Hamiltonian systems

I. V. Krivoshei


Abstract: A differential-geometrical approach is proposed for the investigation of instability in multidimensional nonlinear conservative systems. The critical value $E_c$ of the total energy for onset of instability of the motion in the two-dimensional case is calculated as the smallest value of the potential $U(x,y)$ on the line of zero curvature $K(x,y)=0$ of the potential-energy surface: $E_c=\min U(x,y\mid K=0)$. The criterion is generalized to the multidimensional case and illustrated by definite examples of the Hènon–Heiles systems and the reduced three-dimensional Yang–Mills problem.

Received: 17.05.1988


 English version:
Theoretical and Mathematical Physics, 1990, 82:2, 187–194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024