RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1991 Volume 87, Number 2, Pages 220–234 (Mi tmf5485)

This article is cited in 1 paper

Reductions and exact solutions of nonlinear multidimensional Schrödinger equations

A. F. Barannik, V. A. Marchenko, W. I. Fushchych


Abstract: Using the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra $AO(n)$, we describe the maximal subalgebras of rank $n$ and $n-1$ of the extended isochronous Galileo algebra, and also the maximal subalgebras of rank $n$ of the generalized extended classical Galileo algebra $A\widetilde G(1,n)$, the extended special Galileo algebra $A\widetilde G(2,n)$, and the extended complete Galileo algebra $A\widetilde G(3,n)$. Using the subalgebras of rank $n$, we construct ansatzes that reduce multidimensional Schrödinger equations to ordinary differential equations. Exact solutions of the Schrödinger equations are found from the solutions of the reduced equations.

Received: 07.12.1990


 English version:
Theoretical and Mathematical Physics, 1991, 87:2, 488–498

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024