RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2000 Volume 122, Number 1, Pages 118–127 (Mi tmf559)

This article is cited in 8 papers

Asymptotic approximations for a new eigenvalue in linear problems without a threshold

D. E. Pelinovsky, C. Sulem

University of Toronto

Abstract: We study the criterion for a new eigenvalue to appear in the linear spectral problem associated with the intermediate long-wave equation. We compute the asymptotic value of the new eigenvalue in the limit of a small potential using a Fourier decomposition method. We compare the results with those for the Schrödinger operator with a radially symmetrical potential.

DOI: 10.4213/tmf559


 English version:
Theoretical and Mathematical Physics, 2000, 122:1, 98–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024