RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1990 Volume 83, Number 1, Pages 14–22 (Mi tmf5745)

This article is cited in 10 papers

Identities on solutions of the wave equation in the enveloping algebra of the conformal group

V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov, I. V. Shirokov


Abstract: The enveloping algebra of the conformal-group algebra of Minkowski space is regarded as an algebra of differential symmetry operators of the wave equation. It is shown that this algebra is graded. The structure of the enveloping algebra and of its ideal is investigated by means of the grading. The ideal consists of identities of elements of the enveloping algebra on solutions of the wave equation. All identities that consist of second-order operators are found.

Received: 16.01.1989


 English version:
Theoretical and Mathematical Physics, 1990, 83:1, 347–353

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025