RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2000 Volume 123, Number 1, Pages 88–93 (Mi tmf588)

This article is cited in 11 papers

Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice

F. M. Mukhamedov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan

Abstract: The Ising model on a Bethe lattice of order $k\geq2$ is considered. For maximum or minimum translation-invariant Gibbs states of this model, the relations between the von Neumann algebras generated by these states for the Gelfand–Neimark–Segal representation are found. These algebras can be of types $\mathrm{III}_\lambda$, $\lambda\in(0,1)$, and $\mathrm{III}_1$.

Received: 13.07.1999

DOI: 10.4213/tmf588


 English version:
Theoretical and Mathematical Physics, 2000, 123:1, 489–493

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025