RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 150, Number 2, Pages 179–192 (Mi tmf5972)

This article is cited in 69 papers

$M$-Theory of Matrix Models

A. S. Alexandrova, A. D. Mironovba, A. Yu. Morozova

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b P. N. Lebedev Physical Institute, Russian Academy of Sciences

Abstract: Small $M$-theories incorporate various models representing a unified family in the same way that the $M$-theory incorporates a variety of superstring models. We consider this idea applied to the family of eigenvalue matrix models: their $M$-theory unifies various branches of the Hermitian matrix model (including the Dijkgraaf–Vafa partition functions) with the Kontsevich $\tau$-function. Moreover, the corresponding duality relations are reminiscent of instanton and meron decompositions, familiar from the Yang–Mills theory.

Keywords: string theory, matrix model, duality.

Received: 01.05.2006

DOI: 10.4213/tmf5972


 English version:
Theoretical and Mathematical Physics, 2007, 150:2, 153–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024