RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 151, Number 2, Pages 179–194 (Mi tmf6038)

This article is cited in 1 paper

Localization properties of highly singular generalized functions

A. G. Smirnov

P. N. Lebedev Physical Institute, Russian Academy of Sciences

Abstract: We study the localization properties of generalized functions defined on a broad class of spaces of entire analytic test functions. This class, which includes all Gelfand–Shilov spaces $S^{\beta}_{\alpha}(\mathbb R^k)$ with $\beta<1$, provides a convenient language for describing quantum fields with a highly singular infrared behavior. We show that the carrier cone notion, which replaces the support notion, can be correctly defined for the considered analytic functionals. In particular, we prove that each functional has a uniquely determined minimal carrier cone.

Keywords: generalized function, analytic functional, infrared singularity, carrier cone, plurisubharmonic function, Hörmander's $L_2$ estimates.

Received: 03.10.2006

DOI: 10.4213/tmf6038


 English version:
Theoretical and Mathematical Physics, 2007, 151:2, 591–603

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024