RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 152, Number 1, Pages 83–100 (Mi tmf6072)

Rank-$k$ solutions of hydrodynamic-type systems

A. M. Grundlandab, B. Huarda

a Université de Montréal, Centre de Recherches Mathématiques
b Université du Québec à Trois-Rivières

Abstract: We present a variant of the conditional symmetry method for obtaining rank-$k$ solutions in terms of Riemann invariants for first-order quasilinear hyperbolic systems of PDEs in many dimensions and discuss examples of applying the proposed approach to fluid dynamics equations in $n+1$ dimensions in detail. We obtain several new types of algebraic, rational, and soliton-like solutions (including kinks, bumps, and multiple-wave solutions).

Keywords: conditional symmetry, Riemann invariant, rank-$k$ solution of partial differential equations.

DOI: 10.4213/tmf6072


 English version:
Theoretical and Mathematical Physics, 2007, 152:1, 948–962

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024