RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 152, Number 3, Pages 419–429 (Mi tmf6099)

This article is cited in 16 papers

The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices

J. C. Benjumeaa, J. Nuneza, A. F. Tenoriob

a University of Seville
b Universidad Pablo de Olavide

Abstract: We compute the largest dimension of the Abelian Lie subalgebras contained in the Lie algebra $\mathfrak g_n$ of $n\times n$ strictly upper triangular matrices, where $n\in\mathbb N\setminus\{1\}$. We do this by proving a conjecture, which we previously advanced, about this dimension. We introduce an algorithm and use it first to study the two simplest particular cases and then to study the general case.

Keywords: nilpotent Lie algebra, maximal Abelian dimension, strictly upper triangular matrix.

Received: 04.01.2007

DOI: 10.4213/tmf6099


 English version:
Theoretical and Mathematical Physics, 2007, 152:3, 1225–1233

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024