RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 152, Number 3, Pages 502–517 (Mi tmf6106)

This article is cited in 13 papers

Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice

Zh. I. Abdullaev, I. A. Ikromov

A. Navoi Samarkand State University

Abstract: We consider the two-particle Schrödinger operator $H(k)$ on the $\nu$-dimensional lattice $\mathbb{Z}^{\nu}$ and prove that the number of negative eigenvalues of $H(k)$ is finite for a wide class of potentials $\hat{v}$.

Keywords: Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.

Received: 19.06.2006
Revised: 02.12.2006

DOI: 10.4213/tmf6106


 English version:
Theoretical and Mathematical Physics, 2007, 152:3, 1299–1312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025