RUS
ENG
Full version
JOURNALS
// Teoreticheskaya i Matematicheskaya Fizika
// Archive
TMF,
2007
Volume 152,
Number 3,
Pages
502–517
(Mi tmf6106)
This article is cited in
13
papers
Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice
Zh. I. Abdullaev
,
I. A. Ikromov
A. Navoi Samarkand State University
Abstract:
We consider the two-particle Schrödinger operator
$H(k)$
on the
$\nu$
-dimensional lattice
$\mathbb{Z}^{\nu}$
and prove that the number of negative eigenvalues of
$H(k)$
is finite for a wide class of potentials
$\hat{v}$
.
Keywords:
Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.
Received:
19.06.2006
Revised:
02.12.2006
DOI:
10.4213/tmf6106
Fulltext:
PDF file (476 kB)
References
Cited by
English version:
Theoretical and Mathematical Physics, 2007,
152
:3,
1299–1312
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025