RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 155, Number 1, Pages 62–73 (Mi tmf6193)

This article is cited in 2 papers

Light-cone Yang–Mills mechanics: $SU(2)$ vs. $SU(3)$

V. P. Gerdta, Yu. G. Paliiab, A. M. Khvedelidzeac

a Joint Institute for Nuclear Research
b Institute of Applied Physics Academy of Sciences of Moldova
c A. Razmadze Mathematical Institute, Georgian Academy of Sciences

Abstract: We investigate the light-cone $SU(n)$ Yang–Mills mechanics formulated as the leading order of the long-wavelength approximation to the light-front $SU(n)$ Yang–Mills theory. In the framework of the Dirac formalism for degenerate Hamiltonian systems, for models with the structure groups $SU(2)$ and $SU(3)$, we determine the complete set of constraints and classify them. We show that the light-cone mechanics has an extended invariance{:} in addition to the local $SU(n)$ gauge rotations, there is a new local two-parameter Abelian transformation, not related to the isotopic group, that leaves the Lagrangian system unchanged. This extended invariance has one profound consequence. It turns out that the light-cone $SU(2)$ Yang–Mills mechanics, in contrast to the well-known instant-time $SU(2)$ Yang–Mills mechanics, represents a classically integrable system. For calculations, we use the technique of Gröbner bases in the theory of polynomial ideals.

Keywords: gauge symmetry, Hamiltonian system, Gröbner basis.

DOI: 10.4213/tmf6193


 English version:
Theoretical and Mathematical Physics, 2008, 155:1, 557–566

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024