RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 156, Number 1, Pages 3–37 (Mi tmf6228)

This article is cited in 5 papers

An $A_{\infty}$ structure on simplicial complexes

V. V. Dolotin, A. Yu. Morozov, Sh. R. Shakirov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We consider a discrete (finite-difference) analogue of differential forms defined on simplicial complexes, in particular, on triangulations of smooth manifolds. Various operations are explicitly defined on these forms including the exterior differential $d$ and the exterior product $\wedge$. The exterior product is nonassociative but satisfies a more general relation, the so-called $A_{\infty}$ structure. This structure includes an infinite set of operations constrained by the nilpotency relation $(d+\wedge+m+\dotsb)^n=0$ of the second degree, $n=2$.

Keywords: simplicial complex, topology, discrete exterior form, infinity structure.

Received: 20.04.2007

DOI: 10.4213/tmf6228


 English version:
Theoretical and Mathematical Physics, 2008, 156:1, 965–995

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025