RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 156, Number 2, Pages 184–188 (Mi tmf6239)

This article is cited in 1 paper

Differential equation for a functional integral

P. L. Rubin

P. N. Lebedev Physical Institute, Russian Academy of Sciences

Abstract: We propose a new method for calculating functional integrals in cases where the averaged (integrated) functional depends on functions of more than one variable. The method is analogous to that used by Feynman in the one-dimensional case (quantum mechanics). We consider the integration of functionals that depend on functions of two variables and are symmetric under rotations about a point in the plane. We assume that the functional integral is taken over functions defined in a finite spatial domain (in a disc of radius $r$). We obtain a differential equation describing change in the functional as the radius $r$ increases.

Keywords: functional integral, boundary conditions.

Received: 08.05.2007
Revised: 08.10.2007

DOI: 10.4213/tmf6239


 English version:
Theoretical and Mathematical Physics, 2008, 156:2, 1123–1126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024