RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 156, Number 3, Pages 444–453 (Mi tmf6258)

This article is cited in 12 papers

Using the Renyi entropy to describe quantum dissipative systems in statistical mechanics

V. S. Kirchanov

Perm State Technical University

Abstract: We develop a formalism for describing quantum dissipative systems in statistical mechanics based on the quantum Renyi entropy. We derive the quantum Renyi distribution from the principle of maximum quantum Renyi entropy and differentiate this distribution (the temperature density matrix) with respect to the inverse temperature to obtain the Bloch equation. We then use the Feynman path integral with a modified Mensky functional to obtain a Lindblad-type equation. From this equation using projection operators, we derive the integro-differential equation for the reduced temperature statistical operator, an analogue of the Zwanzig equation in statistical mechanics, and find its formal solution in the form of a series in the class of summable functions.

Keywords: quantum Renyi entropy, quantum Renyi distribution, Bloch equation for quantum Renyi distribution, Lindblad equation, Zwanzig equation, quantum dissipative system.

Received: 04.09.2007
Revised: 19.10.2007

DOI: 10.4213/tmf6258


 English version:
Theoretical and Mathematical Physics, 2008, 156:3, 1347–1355

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024