RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 157, Number 2, Pages 286–308 (Mi tmf6280)

This article is cited in 3 papers

Some asymptotic formulas for the Bogoliubov Gaussian measure

V. R. Fatalov

M. V. Lomonosov Moscow State University

Abstract: We consider problems of integrating over the Bogoliubov measure in the space of continuous functions and obtain asymptotic formulas for one class of Laplace-type functional integrals with respect to the Bogoliubov measure. We also prove related asymptotic results concerning large deviations for the Bogoliubov measure. For the basic functional, we take the $L^p$ norm and establish that the Bogoliubov trajectories are Hölder-continuous of order $\gamma<1/2$.

Keywords: Bogoliubov measure, Laplace method in a Banach space.

Received: 19.07.2007

DOI: 10.4213/tmf6280


 English version:
Theoretical and Mathematical Physics, 2008, 157:2, 1606–1625

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025