RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2004 Volume 139, Number 3, Pages 512–528 (Mi tmf63)

This article is cited in 1 paper

Evolution in a Gaussian Random Field

V. I. Alkhimov

Moscow State Region University

Abstract: We consider an evolution process in a Gaussian random field $V(q)$ with the mean $\bigl\langle V(q)\bigr\rangle=0$ and the correlation function $W\bigl(|\mathbf{q}-\mathbf{q}^{\prime}|\bigr)\equiv \bigl\langle V(q)V(q^{\prime})\bigr\rangle$ where $\mathbf{q}\in \mathbb{R}^{d}$, $d$ is the dimension of the Euclidean space $\mathbb{R}^{d}$. For the value $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $t>0$, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $|\mathbf{q}-\mathbf{q}_{0}|\rightarrow\infty$ and $t\rightarrow\infty$.

Keywords: random field, correlation function, Green's function, Feynman–Kac formula, renormalization group.

Received: 23.07.2002
Revised: 27.05.2003

DOI: 10.4213/tmf63


 English version:
Theoretical and Mathematical Physics, 2004, 139:3, 878–893

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024