RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 159, Number 1, Pages 96–108 (Mi tmf6335)

This article is cited in 18 papers

Borel resummation of the $\varepsilon$-expansion of the dynamical exponent $z$ in model A of the $\phi^4(O(n))$ theory

M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff

Saint-Petersburg State University

Abstract: We perform the Borel resummation of the currently known terms of the $\varepsilon$-expansion up to order $\varepsilon^4$ of the dynamical exponent $z$ in the critical-behavior model A. We obtain the large-order asymptotic approximation of the $\varepsilon$-expansion of the dynamical exponent and find a significant discrepancy between the currently calculated orders of the expansion and the obtained asymptotic values. We discuss the influence of this deviation on the accuracy of the resummation results.

Keywords: Borel resummation, dynamical exponent, critical behavior, large-order asymptotic approximation.

Received: 11.08.2008

DOI: 10.4213/tmf6335


 English version:
Theoretical and Mathematical Physics, 2009, 159:1, 499–508

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024