RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 159, Number 2, Pages 299–317 (Mi tmf6350)

This article is cited in 15 papers

The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice

M. I. Muminov

A. Navoi Samarkand State University

Abstract: We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via attractive pair contact potentials. We find a condition for a gap to appear in the essential spectrum and prove that there are infinitely many eigenvalues of the Hamiltonian of the corresponding three-particle system in this gap.

Keywords: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.

Received: 14.02.2008
Revised: 22.08.2008

DOI: 10.4213/tmf6350


 English version:
Theoretical and Mathematical Physics, 2009, 159:2, 667–683

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024