RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 159, Number 3, Pages 490–501 (Mi tmf6367)

This article is cited in 9 papers

Hirota's virtual multisoliton solutions of $N=2$ supersymmetric Korteweg–de Vries equations

A. V. Kiseleva, V. Hussinb

a University Utrecht, Mathematical Institute
b Université de Montréal, Département de Mathématiques et de Statistique

Abstract: We prove that for $a=1$ or $a=4$, the $N=2$ supersymmetric Korteweg–de Vries (super-KdV) equations obtained by Mathieu admit Hirota's $n$-supersoliton solutions, whose nonlinear interaction does not produce any phase shifts. For initial profiles that cannot be distinguished from a one-soliton solution at times $t\ll0$, we reveal the possibility of a spontaneous decay and transformation into a solitonic solution with a different wave number within a finite time. This paradoxical effect is realized by the completely integrable $N=2$ super-KdV systems if the initial soliton is loaded with other solitons that are virtual and become manifest through the $\tau$-function as time increases.

Keywords: Hirota's soliton, $N=2$ supersymmetric KdV, Krasil'shchik–Kersten system, phase shift, spontaneous decay.

DOI: 10.4213/tmf6367


 English version:
Theoretical and Mathematical Physics, 2009, 159:3, 833–841

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024