RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 160, Number 1, Pages 15–22 (Mi tmf6374)

This article is cited in 13 papers

A class of multidimensional integrable hierarchies and their reductions

L. V. Bogdanov

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We consider a class of multidimensional integrable hierarchies connected with the commutativity of general (unreduced) $(N+1)$-dimensional vector fields containing a derivative with respect to a spectral variable. These hierarchies are determined by a generating equation, equivalent to the Lax–Sato form. We present a dressing scheme based on a nonlinear vector Riemann problem for this class. As characteristic examples, we consider the hierarchies connected with the Manakov–Santini equation and the Dunajski system.

Keywords: integrable hierarchy, dispersionless equation, heavenly equation, dressing method.

DOI: 10.4213/tmf6374


 English version:
Theoretical and Mathematical Physics, 2009, 160:1, 887–893

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024