RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 161, Number 2, Pages 191–203 (Mi tmf6431)

This article is cited in 23 papers

The $2{\times}2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system

D. P. Novikov

Omsk State Technical University, Omsk, Russia

Abstract: We show that the Belavin–Polyakov–Zamolodchikov equation of the minimal model of conformal field theory with the central charge $c=1$ for the Virasoro algebra is contained in a system of linear equations that generates the Schlesinger system with $2{\times}2$ matrices. This generalizes Suleimanov's result on the Painlevé equations. We consider the properties of the solutions, which are expressible in terms of the Riemann theta function.

Keywords: Belavin–Polyakov–Zamolodchikov equation, Schlesinger system, Painlevé equation, Garnier system.

Received: 02.12.2008

DOI: 10.4213/tmf6431


 English version:
Theoretical and Mathematical Physics, 2009, 161:2, 1485–1496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024