RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 162, Number 3, Pages 397–407 (Mi tmf6477)

This article is cited in 13 papers

Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve

I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov

St.~Petersburg State University of Information Technologies, Mechanics, and Optics, St.~Petersburg, Russia

Abstract: We consider the two-dimensional Schrödinger operator with a $\delta$-potential supported by curve. For the cases of infinite and closed finite smooth curves, we obtain lower bounds on the spectrum of the considered operator that are expressed explicitly in terms of the interaction strength and a parameter characterizing the curve geometry. We estimate the bottom of the spectrum for a piecewise smooth curve using parameters characterizing the geometry of the separate pieces. As applications of the obtained results, we consider curves with a finite number of cusps and general “leaky” quantum graph as the support of the $\delta$-potential.

Keywords: Schrödinger operator, singular potential, spectral estimate, Birman–Schwinger transformation.

Received: 01.08.2009

DOI: 10.4213/tmf6477


 English version:
Theoretical and Mathematical Physics, 2010, 162:3, 332–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024