Abstract:
Resultants play an increasingly important role in modern theoretical physics: they appear whenever we have nonlinear (polynomial) equations, nonquadratic forms, or non-Gaussian integrals. Being a research subject for more than three hundred years, resultants are already quite well studied, and many explicit formulas, interesting properties, and unexpected relations are known. We present a brief overview of these results, from classical ones to those obtained relatively recently. We emphasize explicit formulas that could bring practical benefit in future physical research.