RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 163, Number 2, Pages 299–313 (Mi tmf6501)

The renormalizing series of some integral equations

B. Candelperghera, T. Grandoub

a Laboratoire J. Dieudonné, Université de Nice, Nice, France
b Institut Non Linéaire de Nice, Valbonne, France

Abstract: We consider integral equations for which the perturbation expansion gives a power series in a parameter $h$ whose coefficients are divergent integrals. We eliminate the divergent integrals by introducing a renormalizing $Z(t,h)$ series in the minimal subtraction scheme. We investigate the convergence of the formal $Z$ series in relation to the kernels of the integral equations. We find a relation of the renormalizing series to the Lagrange inversion series and also some other relations.

Keywords: renormalization, divergent integral, Lagrange inversion formula.

Received: 15.10.2009
Revised: 06.11.2009

DOI: 10.4213/tmf6501


 English version:
Theoretical and Mathematical Physics, 2010, 163:2, 653–665

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025